Implementation of Butler (2020) for Slug Testing at Willamette River Site

Step by Step Guidance for Improved Slug **Test Data Acquisition and Processing**

Our Task:

To determine the groundwater to surface water discharge rate at an uplands property adjacent to an in-river Superfund Site.

Improved Methodology: Butler (2020) provides a means to process and interpret non-ideal slug test data. Given the potential wide range of K values and small (2-inch) monitoring well diameters, test success was expected to be variable.

Field Methodology Considerations

- Minimize near-well disturbances: redeveloped wells with suspected low-K skin observed during sampling. New wells installed with sonic drilling to minimize initial low-K skin formation.
- Multiple slug-in and slug-out tests to assess repeatability and direction-dependent effects.
- Completed with 1-foot and 2-foot solid PVC slugs close to well diameter for best balance of speed of test initiation (easily performed by one team member in one motion) with size of difference in initial displacement.
- Logged water levels with pressure transducers at o.5-second intervals. Data reviewed immediately in the field to ensure recovery curve was captured; repeated tests in higher-K intervals at 0.1-second intervals because max displacement not apparent at grater logging interval.
- Monitored to ensure static levels pre- and post-test. Recovery was generally rapid with little drift.

- Data processing in Excel is timeconsuming but necessary step for evaluation prior to importing data into AQTESOLV.
- Data coincided, except in fill.
- One oscillatory response observed in fill; damping was difficult to determine

Data oincide?	Direction Dependence	Slug-In Test with Least Noise	Slug-Out Test with Least Noise	Damping	Well Screen	Aquifer Type	Filter Pack Drainage?	Chart
No	Yes ⁽¹⁾	2 ft	2 ft	Over (oscillatory)	Water Table	Unconfined	Not apparent	12.1B
Yes		1 ft	2 ft	Over	Water Table	Unconfined	Yes	12.4
Yes		2 ft	2 ft	Over	Water Table	Unconfined	Yes	12.4
No	No	2 ft ⁽²⁾	2 ft (2)	Critically or Under	Water Table	Unconfined	Not apparent	12.1B
Yes		1 ft	1 ft	Critically or Under (slug-in)	Below Water	Semiconfined	Not apparent	12.5
				Over (slug-out)	Table			12.2A

• Filter pack drainage was observed in several wells (fill and alluvium).

Automatic matching

Manual visual solution (drawing line manually)

	No	rma	liz	ed			
	data						
	СС	oinci	de	<u>?</u>			
		Yes	:	M			
		V	, 	M			
/	Cho	ose	Ιον	Nec			
	nois	se te	est	foi			
	a	naly	/si	S			
		,					
		V		SI			
	Osc	illat	or	y o			
	C	ritic	all	у			
	damped						
	response						
		data	a?				
		No ▼					
		We					
	SC	cree	ne	d			
	ac	ross	s tl	he			

	Analysis Method Per Butler 2020	Slug-In		Slug-Out			
Well ID/ Lithology		Analysis Method Used in AQTESOLV	K (ft/day)	Solution	K (ft/day)		
MW-02	Non-linear Dagan	Dagan	116	Dagan	No match		
(Fill)		Springer-Gelher ⁽¹⁾	130	Springer-Gelher ⁽¹⁾	331	alternate	
MW-104	Bouwer-Rice	Bouwer-Rice	32	Bouwer-Rice	38	solution because the	
(Shallow Alluvium)	Hvorslev	Hvorslev	44	Hvorslev	51		
MW-106	Bouwer-Rice	Bouwer-Rice	9	Bouwer-Rice	10	solution off	
Deposit)	Hvorslev	Hvorslev	14	Hvorslev	13	no match.	
MW-109	Quasi-steady-state	Dagan (2)	136	Springer-Gelhar	164	2. Used analysi methods available in	
(Fill)		Springer-Gelhar (2)	No match	Dagan ⁽²⁾	No match		
MW-110D	Butler-Zhan	Butler-Zhan (slug-in)	67	Butler-Zhan (slug-in)	96		
(Deep Alluvium)	Cooper et al.	NA	NA	Cooper et al.	29 – 57	software for	
	KGS	NA	NA	KGS	53	formations.	

FLOYD | SNIDER strategy - science - engineering

Authored by Kristin Anderson, LHG Sabine Datum, LG

- Extensive review of Butler 2020 and AQTESOLV software manuals are necessary prior to and during data processing.
- For tests in high-K formations, recommend exploring different solution methods for least noise slug-in and slug-out to verify solution yields an appropriate lower-bound conductivity estimate.
- Recommend exploring automatic and visual matching for solution methods.
- Data analysis using Butler's methodology highlights the limitations and uncertainties in using slug testing in higher conductivity formations. Most K estimates in these formations are considered a lower-bound for calculating discharge rates.